Abstract

Inorganic/organic nanohybrids composed of arrayed TiO2 nanotubes (TiNTs)/porphyrin nanoparticles (NPs) have been fabricated via a wet chemical approach. The inorganic component, particularly the arrayed one-dimensional (1D) nanostructures, provides high charge-carrier mobility and rapid charge transport. The organic component exhibits extensive visible light absorption and good solution processability. Additionally, the geometric restraint by supramolecular assembly renders an improved photostability. A combination of these two components could thus allow for an efficient solar energy conversion. In this work, a colloid of porphyrin NPs prepared by a solvent exchange method is coated on anodic TiNTs by means of a dip-coating treatment to form inorganic/organic hybrids. The hybrids exhibit an improvement on solar absorption and a significant enhancement on photocurrent generation at a small bias compared with individual component. Herein, the inorganic/organic nanohybrids are proved to be excellent photoanodes highly responsive to visible light and thus pave a way to discover new inorganic/organic assemblies for high-performance optoelectronic applications, as well as for device integration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call