Abstract

The objective of the present study was to monitor water-quality assessment by a biological method. Optimum dissolved inorganic mercury sensitivity in the freshwater bivalve Corbicula fluminea was estimated using a combined approach to determine their potentials and limits in detecting contaminants. Detection by bivalves is based on shell closure, a protective strategy when exposed to a water contaminant. To take the rate of spontaneous closures into account, stress associated with fixation by one valve in common valvometers was integrated, and the spontaneous rhythm was associated with daily activity. The response in conditions where the probability of spontaneous closing is the lowest was thus taken into account. To develop dose-response curves, impedance valvometry, in which lightweight impedance electrodes are applied to study free-ranging animals in low-stress conditions, also was used combined with a new analytical approach. The logistic regression dose-response curves take into account variations in both response time and metal concentration in water to significantly improve the methods aiming at determining the optimal sensitivity threshold response. This approach demonstrates that in C. fluminea, inorganic mercury concentrations under the range of 2.0 to 5.1 microg/L (95% confidence interval) cannot be detected within 5 h of addition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.