Abstract

Silicon, as an alloy-type anode material, has recently attracted lots of attention because of its highest known Li+ storage capacity (4200 mAh/g). But lithium insertion into and extraction from silicon are accompanied by a huge volume change, up to 300%, which induces a strong strain on silicon and causes pulverization and rapid capacity fading due to the loss of the electrical contact between part of silicon and current collector. Silicon nanostructures such as nanowires and nanotubes can overcome the pulverization problem, however these nano-engineered silicon anodes usually involve very expensive processes and have difficulty being applied in commercial lithium ion batteries. In this study, we report a novel method using amorphous silicon as inorganic glue replacing conventional polymer binder. This inorganic glue method can solve the loss of contact issue in conventional silicon particle anode and enables successful cycling of various sizes of silicon particles, both nano-particles and micron particles. With a limited capacity of 800 mAh/g, relatively large silicon micron-particles can be stably cycled over 200 cycles. The very cheap production of these silicon particle anodes makes our method promising and competitive in lithium ion battery industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.