Abstract

Anaerobic sewage treatment is a proven technology in warm climate regions, and sponge-bed trickling filters (SBTFs) are an important post-treatment technology to remove residual organic carbon and nitrogen. Even though SBTFs can achieve a reasonably good effluent quality, further process optimization is hampered by a lack of mechanistic understanding of the factors influencing nitrogen removal, notably when it comes to mainstream anaerobically treated sewage. In this study, the factors that control the performance of SBTFs following anaerobic (i.e., UASB) reactors for sewage treatment were investigated. A demo-scale SBTF fed with anaerobically pre-treated sewage was monitored for 300 days, showing a median nitrification efficiency of 79% and a median total nitrogen removal efficiency of 26%. Heterotrophic denitrification was limited by the low organic carbon content of the anaerobic effluent. It was demonstrated that nitrification was impaired by a lack of inorganic carbon rather than by alkalinity limitation. To properly describe inorganic carbon limitation in models, bicarbonate was added as a state variable and sigmoidal kinetics were applied. The resulting model was able to capture the overall long-term experimental behaviour. There was no nitrite accumulation, which indicated that nitrite oxidizing bacteria were little or less affected by the inorganic carbon limitation. Overall, this study indicated the vital role of influent characteristics and operating conditions concerning nitrogen conversions in SBTFs treating anaerobic effluent, thus facilitating further process optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call