Abstract

Arsenic, a major environmental toxicant and pollutant, is a global public health concern. Among its many adverse effects, arsenic is immunotoxic, but its effects on human neutrophil functions are not yet well-defined. In this study, we aimed to evaluate the in vitro effects of acute low-dose NaAsO2 exposure on human polymorphonuclear neutrophils (PMNs) for 12 h on the following innate defense mechanisms: formation of neutrophil extracellular traps (NETs), production of reactive oxygen species (ROS), and phagocytosis. Phorbol myristate acetate (PMA) was added to induce NETs formation, which was quantified by measuring cell-free extracellular DNA (cf-DNA), myeloperoxidase-conjugated (MPO)-DNA and neutrophil elastase-conjugated (NE)-DNA, and confirmed by immunofluorescence labeling and imaging. Extracellular bactericidal activity by NETs was evaluated by co-culturing Escherichia coli and PMNs in the presence of a phagocytic inhibitor. Levels of NETs in the culture medium after PMA stimulation was significantly lower in PMNs pre-exposed to arsenic than those not exposed to arsenic. Immunofluorescence staining and extracellular bactericidal activity by NETs revealed similar results. Phagocytosis and ROS production by PMNs were also significantly reduced by arsenic pre-exposure. Together, our findings provide new insights in arsenic immunotoxicity and suggest how it increases susceptibility to infectious diseases in humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.