Abstract

Inoculum availability and conidial dispersal patterns of Fusarium mangiferae, causal agent of mango malformation disease, were studied during 2006 and 2007 in an experimental orchard. The spatial pattern of primary infections in a heavily infected commercial mango orchard corresponded with a typical dispersal pattern caused by airborne propagules. Malformed inflorescences were first observed in mid-March, gradually increased, reaching a peak in May, and declined to negligible levels in August. The sporulation capacity of the malformed inflorescences was evaluated during three consecutive months. Significantly higher numbers of conidia per gram of malformed inflorescence were detected in May and June than in April. Annual conidial dissemination patterns were evaluated by active and passive trapping of conidia. A peak in trapped airborne conidia was detected in May and June for both years. The daily pattern of conidial dispersal was not associated with a specifically discernable time of day, and an exponential correlation was determined between mean relative humidity (RH) and mean number of trapped conidia. Higher numbers of conidia were trapped when RH values were low (<55%). This is the first detailed report on airborne dispersal of F. mangiferae, serving as the primary means of inoculum spread.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.