Abstract

Phosphate-solubilizing bacteria represent a bioalternative in making soil-immobilized phosphorus (P) available to plants, and consequently improve agriculture sustainability and reduce nutrient pollution. In this study, we examined whether Rhizobium sp. B02 inoculation can affect the soil P fractions. Moreover, we investigated how inoculation influences the growth, physiological traits, and productivity of the maize crop. Field tests were carried out to evaluate the combined application of strain B02 and reduced doses of P fertilizer. Soil P fractionation was performed after crop harvesting, assessing the P dynamics. To study the plant response, samplings were carried out in three phenological stages—the vegetative stage of the 7 fully emerged leaves with leaf collars (V7), the vegetative stage of the tassel (VT), and the reproductive stage of physiological maturity (R6). Using 50% of P fertilizer recommended, the strain inoculation increased the labile inorganic P fraction by 14% compared to the control treatment at the same dose, indicating that it favored the Pi mobility. Under these same conditions in the V7 and VT phenological stages, the inoculation significantly improved shoot length (28 and 3%) and shoot dry weight (9.8 and 12%). B02 inoculation increased grain yield by 696 kg ha−1 using 50% of the recommended rate of P fertilizer, phenocopying the complete P fertilization treatment without inoculation. Therefore, Rhizobium sp. B02 inoculation replaced 50% of P fertilizer in maize and increased the soil P availability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call