Abstract

The India-based Neutrino Observatory (INO) has proposed to build a magnetised Iron-CALorimeter (ICAL) to study atmospheric neutrinos. The ICAL detector will use 28,800 Resistive Plate Chambers (RPCs) of 2 m × 2 m area as active detector elements. The particle interaction signals in the RPCs are amplified and converted into logic signals using discriminators. These logic signals are processed by the RPC-DAQ module which is mounted with every RPC. RPC-DAQ is built around Intel’s Cyclone IV FPGA, HPTDC and Ethernet controller W5300. Pre-trigger signals generated in each RPC-DAQ, participate in forming a global event trigger (GT). On receiving the GT, the RPC-DAQ records mainly the event time, RPC strip-hit pattern along with relative time stamps of the hits. The strip rates, are recorded periodically in order to monitor the health of the RPCs. The RPC-DAQ then packages these data and sends them over Ethernet to the back-end servers. RPC-DAQ performance and upgrade plans will be presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.