Abstract
The new technique of measuring frequency by optical lattice clocks now approaches to the relative precision of [Formula: see text]. We propose to place such precise clocks in space and to use Doppler tracking method for detecting low-frequency gravitational wave below 1[Formula: see text]Hz. Our idea is to locate three spacecrafts at one A.U. distance (say at L1, L4 and L5 of the Sun–Earth orbit), and apply the Doppler tracking method by communicating “the time” each other. Applying the current available technologies, we obtain the sensitivity for gravitational wave with third- or fourth-order improvement ([Formula: see text] or [Formula: see text] level in [Formula: see text]–[Formula: see text][Formula: see text]Hz) than that of Cassini spacecraft in 2001. This sensitivity enables us to observe black hole (BH) mergers of their mass greater than [Formula: see text] in the cosmological scale. Based on the hierarchical growth model of BHs in galaxies, we estimate the event rate of detection will be 20–50 a year. We nickname “INO” (Interplanetary Network of Optical Lattice Clocks) for this system, named after Tadataka Ino (1745–1818), a Japanese astronomer, cartographer, and geodesist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.