Abstract

Using steel slag to partially replace the natural aggregate in asphalt mixture to produce high-performance asphalt mixture has gained significant interest in recent years as a value-added option to recycle steel slag. However, the poor homogeneity of the material properties of steel slag aggregates remains a concern for this recycling approach. In this study, an innovative method of using industrially produced steel slag powder (SSP) to replace the mineral filler in asphalt mixture was proposed to address this concern. Five fillers, including four SSP fillers, obtained by grinding different steel slag aggregates with an industrialized production line, and one conventional limestone powder (LP) filler, were evaluated. The chemical compositions and micro-morphologies of the SSPs were first characterized to evaluate the material homogeneity and gain insights into the advantages of using SSPs as fillers. Then, asphalt mixtures with different fillers were designed and produced, and their moisture stability, rutting resistance, and low-temperature crack resistance, were characterized. It was found that the industrially produced SSPs possessed homogeneous properties, and improved the compatibility between filler particles and asphalt binder. Besides, the asphalt mixtures with SSP fillers showed better resistance to the moisture damage, permanent deformation, low-temperature crack in terms of fracture energy, than the asphalt mixture with LP filler. Therefore, it was concluded that using SSPs as a replacement of mineral fillers in asphalt mixture provided a reliable and value-added solution to recycle steel slag.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call