Abstract
More and more simulation tools are being used in the development of gears in order to save development time and costs while improving the gears. BECAL is a comprehensive software tool for the tooth contact analysis (TCA) of bevel, hypoid, beveloid and spur gears. The gear geometry is provided by a manufacturing simulation or a geometry import. To determine the exact contact conditions in the TCA, the discrete flank points are converted into a continuous and differentiable surface representation. At present, it is an approximation by means of Bézier tensor product surfaces. With this surface representation, significant deviations to the target points can occur depending on the tooth geometry. In particular tip, root and end relief, strongly curved tooth root geometries or discontinuous topological measurement data due to e.g. micro-pitting can only be considered insufficiently.Hence, a new method for surface approximation with non-uniform rational b‑spline surfaces (NURBS) is presented. Its application can significantly improve the surface representation compared to the target geometry, leading to more realistic results regarding contact stress, tooth root stress and transmission error. To illustrate the advantages, NURBS-based surfaces are compared with the Bézier tensor product surfaces. Finally, the potential of the new approach regarding the prediction of lifetime and acoustics is demonstrated by application to different gear geometries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.