Abstract

Through-silicon via (TSV) is an emerging technology for three-dimensional integrated circuit, system-in-packaging and wafer-level packaging applications. Among several available TSV formation methods, Bosch deep reactive ion etching (DRIE) is widely used because it enables the fabrication of TSVs with almost any diameter, from the submicrometer level to hundreds of micrometers. However, the high cost of Bosch DRIE makes it uneconomical for industrial production. We present a novel wafer-level TSV formation approach that is effective and cost-efficient. The proposed method integrates a diode-pumped solid-state ultraviolet nanosecond pulsed laser and rapid wet chemical etching. The former is effective in drilling through 400 µm thick silicon wafers and the latter is used for removing the unwanted heat-affected zone, recast layer and debris left after drilling. Experimental results demonstrate that the combined approach effectively eliminates the unwanted material formed by nanosecond laser pulses. Furthermore, this approach has a significant cost advantage over Bosch DRIE. In summary, the proposed approach affords superior TSV quality, higher TSV throughput and lower cost of process ownership than Bosch DRIE. These advantages could provide the necessary impetus for rapid commercialization of the several high-density fabrication methodologies that depend on TSVs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call