Abstract

Developing interfacial connections is one of the breakthrough strategies to improve the photocatalytic activity of graphene/p-n heterojunction systems. Herein, natural tragacanth mucilage, for the first time, was employed as cost-effective and ecofriendly surfactant to prepare highly efficient ZnO–ZnBi2O4/graphene hybrid photocatalyst. The results indicated that the methylene blue (MB) photocatalytic degradation efficiency of ZnO–ZnBi2O4/graphene-mucilage heterojunction, containing 10 wt% ZnBi2O4 and 1 wt% graphene, was ∼1.2, 1.4, 3.1 and 8.3 times higher than that of ZnO–ZnBi2O4/graphene, ZnO–ZnBi2O4, ZnBi2O4 and ZnO samples, respectively. This significant improvement in the photocatalytic performance could be mainly ascribed to the desirable advantages of using natural mucilage as surfactant, including uniform distribution of ZnO–ZnBi2O4 nanoparticles on the surface of graphene sheets, increasing of the effective surface area, and improving of the charge carriers separation. Based on the trapping experiments, electron spin resonance and photoelectrochemical Mott-Schottky tests, direct Z-Scheme charge transfer mechanism with hydroxyl radicals as main active species was suggested for photocatalytic degradation of MB on the ZnO–ZnBi2O4/graphene-mucilage nanocomposite. This study provides a new insight to fabricate more homogeneous and close contact interfaces in graphene-based hybrid photocatalytic systems for environmental remediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call