Abstract
Abstract This paper presents a modulation strategy for self-balancing of capacitor voltages of three-phase neutral-point clamped bi-directional rectifier (without feedback controller and sensors). It is identified that regions within a sector are divided into two categories: (a) One small vector among three selected vectors and (b) Two small vectors among three selected vectors. For category (a) positive and negative commutation state of small vector is implemented for equal duty cycle but for category (b) positive and negative commutation state of small vectors is implemented for unequal duty cycle. Based on this observation, an innovative idea is executed to remove these discrepancies. The innovative optimized space vector switching sequences negative and positive commutation state of both the small vectors are implemented for equal duty cycle during each sampling period resulting in self-balancing of DC-bus capacitors with much reduced ripples under steady-state and dynamic load conditions for both rectification and inversion mode of operation. The converter exhibits excellent performance in terms of other critical parameters like unity input power factor, low input current THD, minimum possible switching losses, reduced-rippled and well-regulated DC voltage. The proposed control algorithm is tested through exhaustive simulation of converter using MATLAB Simulink software.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Emerging Electric Power Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.