Abstract

In this study, we explored the application of Short-Wave Infrared (SWIR) hyperspectral imaging combined with Competitive Adaptive Reweighted Sampling (CARS) and advanced regression models for the non-destructive assessment of protein content in dried laver. Utilizing a spectral range of 900–1700 nm, we aimed to refine the quality control process by selecting informative wavelengths through CARS and applying various preprocessing techniques (standard normal variate [SNV], Savitzky-Golay filtering [SG], Orthogonal Signal Correction [OSC], and StandardScaler [SS]) to enhance the model's accuracy. The SNV-OSC-StandardScaler- Support vector regression (SVR) model trained on CARS-selected wavelengths significantly outperformed the other configurations, achieving a prediction determination coefficient (Rp2) of 0.9673, root mean square error of prediction of 0.4043, and residual predictive deviation of 5.533. These results highlight SWIR hyperspectral imaging's potential as a rapid and precise tool for assessing dried laver quality, aiding food industry quality control and dried laver market growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.