Abstract
The performance of electrocoagulation-flotation (ECF) process can profoundly be affected by the reactor design and electrode configuration. These may, in turn, influence the removal efficiency, flow hydrodynamic, floc formation, and flotation/settling characteristics. The present work aimed at developing a new spiral electrode configuration to enhance the ECF process. To do so, the impacts of parameters such as energy consumption, removal efficiency of the contaminants from industrial wastewater with a composition of turbidity, emulsified oil, and heavy metals (Si, Zn, Pb, Ni, Cu, Cr, and Cd), as well as stirring speed and foaming have been investigated. Comparison was also made between the experimental results of the new electrode configuration with the conventional rectangular cell with plate electrode configuration with the same volume and electrode surface area. The findings revealed that energy consumption of the spiral electrode configuration within the operating times of 10, 20, 30, 32, 48, and 70 min, was approximately 20% lower compared to that of the conventional ECF. Moreover, the maximum and minimum removal efficiency of 97% and 60% were obtained for turbidity and TOC for the stirring speed of 500 rpm and Reynolds number of 10,035, respectively. Finally, the formed gas bubbles tilted toward the center due to the enhanced flow hydrodynamic which resulted in substantial reduction of foam formation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.