Abstract
This article addresses the challenge of identifying the polarimetric covariance matrix (PCM) structures associated with a polarimetric synthetic aperture radar (SAR) image. Interestingly, such information can be used, for instance, to improve the scene interpretation or to enhance the performance of (possibly PCM-based) segmentation algorithms as well as other kinds of methods. To this end, a general framework to solve a multiple hypothesis test is introduced with the aim to detect and classify contextual spatial variations in polarimetric SAR images. Specifically, under the null hypothesis, only one unknown structure is assumed for data belonging to a two-dimensional spatial sliding window, whereas under each alternative hypothesis, data are partitioned into subsets sharing different PCM structures. The problem of partition estimation is solved by resorting to hidden random variables representative of covariance structure classes and the expectation–maximization algorithm. The effectiveness of the proposed detection strategies is demonstrated on both simulated and real polarimetric SAR data also in comparison with existing classification algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Aerospace and Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.