Abstract

We have employed, to the best of our knowledge, a novel excitation scheme to perform the first high-repetition-rate planar laser-induced fluorescence (PLIF) measurements of a CN radical in combustion. The third harmonic of a Nd:YVO4 laser at 355nm due to its relatively large linewidth overlaps with several R branch transitions in a CN ground electronic state. Therefore, the 355nm beam was employed to directly excite the CN transitions with good efficiency. The CN measurements were performed in premixed CH4-N2O flames with varying equivalence ratios. A detailed characterization of the high-speed CN PLIF imaging system is presented via its ability to capture statistical and dynamical information in these premixed flames. Single-shot CN PLIF images obtained over a HMX pellet undergoing self-supported deflagration are presented as an example of the imaging system being applied towards characterizing the flame structure of energetic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call