Abstract

Catalytic reactive distillation offers new opportunities for manufacturing fatty acid esters, involved both in biodiesel and specialty chemicals. A key problem is the effective water removal in view of protecting the solid catalyst and avoiding costly recovery of the alcohol excess. This work proposes a novel approach based on dual esterification of fatty acid with light and heavy alcohols, namely methanol and 2-ethylhexanol. These two complementary reactants have an equivalent reactive function but synergistic thermodynamic features. The setup behaves rather as reactive absorption combined with reactive azeotropic distillation with heavy alcohol as co-reactant and water-separation agent. Another element of originality is the control of the inventory of alcohols by fixing the reflux of heavy alcohol and the light alcohol column inflow. This strategy allows achieving both stoichiometric reactant feed rate and large flexibility in ester production. The distillation column for recovering light alcohol from water is not longer necessary. The result is a compact, efficient and easy-to-control multi-product reactive setup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.