Abstract
Despite the large impact chronic obstructive pulmonary disease (COPD) that has on the population, the implementation of new technologies for diagnosis and treatment remains limited. Current practices in ambulatory oxygen therapy used in COPD rely on fixed doses overlooking the diverse activities which patients engage in. To address this challenge, we propose a software architecture aimed at delivering patient-personalized edge-based artificial intelligence (AI)-assisted models that are built upon data collected from patients' previous experiences along with an evaluation function. The main objectives reside in proactively administering precise oxygen dosages in real time to the patient (the edge), leveraging individual patient data, previous experiences, and actual activity levels, thereby representing a substantial advancement over conventional oxygen dosing. Through a pilot test using vital sign data from a cohort of five patients, the limitations of a one-size-fits-all approach are demonstrated, thus highlighting the need for personalized treatment strategies. This study underscores the importance of adopting advanced technological approaches for ambulatory oxygen therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.