Abstract

Acoustic Induced Vibration (AIV) refers to the high acoustic energy generated by pressure-reducing devices that excite pipe shell vibration modes, producing excessive dynamic stress. Analysis of this risk is an important part of Asset Integrity Management systems as AIV can cause catastrophic piping failure. Existing guidelines address this risk through an analytical assessment. However, these methodologies are not fully known and input parameters are limited. Some limits to the guidelines are pointed out with recommendations to improve them.The approach presented for identifying AIV damage is based on a dynamic stress evaluation at pipe discontinuities (welded connections and supports). This evaluation is performed through a fluid-structure coupling Finite Element Analysis. Pressure fluctuations inside the pipe are predicted and coupled with a pipe structural analysis. This methodology is provided with its validation through measurement on an actual AIV field case, corresponding to a crack initiation due to AIV on an FPSO flare network tail pipe.To conclude the paper, the method is then applied to quantitatively assess the mitigation actions’ efficiency on an actual case. Different solutions have been individually tested to end up with a final solution that reduces the damage to acceptable levels in the most cost-effective manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.