Abstract

Predictive in vitro methods to investigate drug metabolism in the human intestine using intact tissue are of high importance. Therefore, we studied the metabolic activity of human small intestinal and colon slices and compared it with the metabolic activity of the same human intestinal segments using the Ussing chamber technique. The metabolic activity was evaluated using substrates to both phase I and phase II reactions: testosterone, 7-hydroxycoumarin (7HC), and a mixture of cytochrome P450 (P450) substrates (midazolam, diclofenac, coumarin, and bufuralol). In slices of human proximal jejunum, the metabolic activity of several P450-mediated and conjugation reactions remained constant up to4hof incubation. In the colon slices, conjugation rates were virtually equal to those in small intestine, whereas P450-mediated conversions occurred much slower. In both organs, morphological evaluation and ATP content implied tissue integrity within this period. P450 conversions using the Ussing chamber technique showed that the metabolic rate (sum of metabolites measured in apical, basolateral, and tissue compartments) was constant up to 3 h. For 7HC conjugations, the metabolic rate remained constant up to 4 h. The distribution of the metabolites in the compartments differed between the substrates. Overall, metabolic rates were surprisingly similar in both techniques and appear similar to or even higher than in liver. In conclusion, this study shows that both human intestinal precision-cut slices and Ussing chamber preparations provide useful tools for in vitro biotransformation studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.