Abstract

A multitude of pathophysiologic pathways culminate in the final common denominator of cervical softening, shortening, and dilation that lead to preterm birth. At present, a variety of emerging technology aims to objectively quantify critical cervical parameters such as microstructural organization and softening of the cervix. If the nature and timing of cervical changes can be precisely identified, it should be possible to identify the causative upstream molecular processes and resultant biomechanical events associated with each unique pathway. This would promote molecular studies, ultimately leading to novel approaches to preterm birth prediction, novel treatments, and prevention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.