Abstract

Robotic applications are commonly used in industrial automation systems. Such systems are often comprised of a series of equipment, including robotic arms, conveyors, a workspace, and fixtures. While each piece of equipment may be calibrated with the highest precision, their alignment in relation to each other is an important issue in defining the accuracy of the system. Currently, a variety of complex automated and manual methods are used to align a robotic arm to a workspace. These methods often use either expensive equipment or are slow and skill-dependent.This paper presents a novel low-cost method for aligning an industrial robot to its workcell at 6 degrees of freedom (DoF). The solution is new, simple and easy to use and intended for the SMEs dealing with low volume, high complexity automated systems. The proposed method uses three dial indicators mounted to a robot end effector and a fixed measurement cube, positioned on a workcell. The robot is pre-programmed for a procedure around the cube. The changes on the dial indicators are used to calculate the misalignment between the robot and the workcell. Despite simplicity of the design, the solution is supported with complex real-time mathematical calculations and proven to identify and eliminate misalignment up to 3 mm and 5 degrees to an accuracy of 0.003 mm and 0.002 degrees: much higher than the precision required for a conventional industrial robot.In this article, the authors describe a proposed solution, validate the computation both theoretically and through a laboratory test rig and simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.