Abstract

Conventional ion spectroscopy is inapplicable for ions produced in low concentrations or with low spectral resolutions. Hence, we constructed a high-resolution vacuum ultraviolet mass-analyzed threshold ionization (HR VUV-MATI) spectrometer composed of a four-wave frequency mixing cell capable of generating long-lasting and intense VUV laser pulses of ∼1 × 1010 photons/pulse at wavelengths of 123.6-160.0nm, a space-focused linear time-of-flight photoionization chamber with a new ion-source assembly, and a compact molecular beam chamber with a temperature-controlled pulsed nozzle for ion spectroscopy. The ion-source assembly and pulsing schemes enabled an ∼15-μs-delayed but extremely weak pulsed-field-ionization of the molecules in the zero-kinetic-energy (ZEKE) states and first-order space focusing of the generated MATI ions. These ZEKE states were effectively generated by a minute electric jitter from the high-lying Rydberg states, which were initially prepared via VUV photoexcitation. The spectral and mass resolutions (∼5cm-1 and 2400, respectively) and the signal strength were simultaneously enhanced using this spectrometer. Moreover, it could be used to measure the fine vibrational spectrum from the zero-pointlevel of the cation and the exact adiabatic ionization energy of the neutral molecule. Additionally, it could be used to measure the appearance energies of the photoproducts and elucidate the vibrational structures of the cationic isotopomers, utilizing other pulsing schemes. Furthermore, this spectrometer could be used to analyze the congested vibrational spectrum of a cation with multiple conformations. Thus, the HR VUV-MATI spectrometer-a potential alternative to photoelectron spectrometers-can be used to analyze the conformational structure-dependent reactivities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call