Abstract

The use of algal biomass still faces challenges associated with the harvesting stages. To address this issue, we propose an innovative hybrid system, in which a biofilm reactor (BR) operates as an algal biomass production and harvesting unit connected to a high-rate algal pond (HRAP), a wastewater treatment unit. BR did not interfered with the biomass chemical composition (protein = 32%, carbohydrates = 11% and total lipids = 18%), with the wastewater treatment (removals efficiency: chemical oxygen demand = 59%, ammonia nitrogen = 78%, total phosphorus = 16% and Escherichia coli = 1 log unit), and did not alter the sedimentation characteristics of the biomass (sludge volume index = 29 mg/L and humidity content = 92%) in the secondary settling tank of the hybrid system. On the other hand, the results showed that this technology achieved a biomass production about 2.6x greater than the conventional system without a BR, and the efficiency of harvesting of the hybrid system was 61%, against 22% obtained with the conventional system. In addition, the BR promoted an increase in the density (~1011 org/m2) and diversity of microalgae in the hybrid system. Chlorella vulgaris was the most abundant species (>60%) from the 4th week of operation until the end of the experiment. Hence, results confirm that the integration of BR into a wastewater treatment plant optimised the production and harvesting of biomass of the hybrid system, making it a promising technology. The importance of economic and environmental analysis studies of BR is highlighted in order to enable its implementation on a large scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call