Abstract

In this paper we discuss a CW Yb:YAG cryogenic laser program that has resulted in the design and demonstration of a novel high power laser. Cryogenically-cooled crystalline solid-state lasers, and Yb:YAG lasers in particular, are attractive sources of scalable CW output power with very high wallplug efficiency and excellent beam-quality that is independent of the output power. This laser consists of a distributed array of seven highly-doped thin Yb:YAG-sapphire disks in a folded multiple-Z resonator. Individual disks are pumped from opposite sides using fiber-coupled ~ 30W 940nm pump diodes. The laser system we have constructed produces a near-diffraction-limited TEM<sub>00</sub> output beam with the aid of an active conduction-cooling design. In addition, the device can be scaled to very high average power in a MOPA configuration, by increasing the number and diameter of the thin disks, and by increasing the power of the pump diodes with only minor modifications to the current design. The thermal and optical benefits of cryogenically-cooled solid-state lasers will be reviewed, scalability of our Yb:YAG cryogenic laser design will be discussed, and we will present experimental results including output power, slope and optical-optical efficiencies, and beam-quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call