Abstract
Abstract Obesity poses a significant global health challenge, with an alarming rise in prevalence rates. Traditional interventions, including lifestyle modifications, often fall short of achieving sustainable weight loss, ultimately leading to surgical interventions, which carry a significant burden and side effects. This necessitates the exploration of effective and relatively tolerable pharmacological alternatives. Among emerging therapeutic avenues, glucagon-based treatments have garnered attention for their potential to modulate metabolic pathways and regulate appetite. This paper discusses current research on the physiological mechanisms underlying obesity and the role of glucagon in energy homeostasis. Glucagon, traditionally recognized for its glycemic control functions, has emerged as a promising target for obesity management due to its multifaceted effects on metabolism, appetite regulation, and energy expenditure. This review focuses on the pharmacological landscape, encompassing single and dual agonist therapies targeting glucagon receptors (GcgRs), glucagon-like peptide-1 receptors (GLP-1Rs), glucose-dependent insulinotropic polypeptide receptors (GIPRs), amylin, triiodothyronine, fibroblast growth factor 21 (FGF21), and peptide tyrosine tyrosine. Moreover, novel triple-agonist therapies that simultaneously target GLP-1R, GIPR, and GcgR show promise in augmenting further metabolic benefits. This review paper tries to summarize key findings from preclinical and clinical studies, elucidating the mechanisms of action, safety profiles, and therapeutic potential of glucagon-based therapies in combating obesity and its comorbidities. Additionally, it explores ongoing research endeavors, including phase III trials, aimed at further validating the efficacy and safety of these innovative treatment modalities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.