Abstract

BackgroundStair climbing up and down is an essential part of everyday's mobility. To enable wheelchair-dependent patients the repetitive practice of this task, a novel gait robot, G-EO-Systems (EO, Lat: I walk), based on the end-effector principle, has been designed. The trajectories of the foot plates are freely programmable enabling not only the practice of simulated floor walking but also stair climbing up and down. The article intended to compare lower limb muscle activation patterns of hemiparetic subjects during real floor walking and stairs climbing up, and during the corresponding simulated conditions on the machine, and secondly to demonstrate gait improvement on single case after training on the machine.MethodsThe muscle activation pattern of seven lower limb muscles of six hemiparetic patients during free and simulated walking on the floor and stair climbing was measured via dynamic electromyography. A non-ambulatory, sub-acute stroke patient additionally trained on the G-EO-Systems every workday for five weeks.ResultsThe muscle activation patterns were comparable during the real and simulated conditions, both on the floor and during stair climbing up. Minor differences, concerning the real and simulated floor walking conditions, were a delayed (prolonged) onset (duration) of the thigh muscle activation on the machine across all subjects. Concerning stair climbing conditions, the shank muscle activation was more phasic and timely correct in selected patients on the device. The severely affected subject regained walking and stair climbing ability.ConclusionsThe G-EO-Systems is an interesting new option in gait rehabilitation after stroke. The lower limb muscle activation patterns were comparable, a training thus feasible, and the positive case report warrants further clinical studies.

Highlights

  • Stair climbing up and down is an essential part of everyday's mobility

  • The dynamic EMG of selected lower limb muscles of six ambulatory hemiparetic subjects confirmed rather comparable muscle activation patterns during the real and simulated walking on the floor, and a more timely correct pattern of the shank muscles during the simulated stair climbing on the machine as compared to the real walking condition

  • The G-EO-Systems followed the intention of the HapticWalker, but specifications included smaller dimensions real walking on the floor tibialis gastrocnemius anterior vastus medialis vastus lateralis tibialis anterior simulated walking on the floor gastrocnemius vastus medialis vastus lateralis

Read more

Summary

Introduction

To enable wheelchair-dependent patients the repetitive practice of this task, a novel gait robot, G-EO-Systems (EO, Lat: I walk), based on the end-effector principle, has been designed. The article intended to compare lower limb muscle activation patterns of hemiparetic subjects during real floor walking and stairs climbing up, and during the corresponding simulated conditions on the machine, and secondly to demonstrate gait improvement on single case after training on the machine. The restoration and improvement of walking functions is a primary concern with respect to the aspired social and vocational reintegration. To achieve this goal, a task specific repetitive training seems most promising [3]. The assignment of human resources for manual assistance in this method is considerable; up to three therapists have to place the paretic limb during the swing phase and to shift the patient's weight onto the stance limb

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.