Abstract

Increasing the size of low-orbiting space telescopes is necessary to attain high-resolution imaging for Earth or planetary science, which implies bigger and more complex imaging systems in the focal plane. The use of homothetic imaging systems such as the Spot and Pleiades push-broom satellites would lead to prohibitive linear focal plane dimensions, especially for IR missions requiring large-volume cryostat. We present two optical TMA telescopes using an image-segmentation module based on astronomical image slicer technology developed for integral field spectroscopy, made of a set of freeform mirrors defined by Zernike polynomials. Each telescope has a linear 1.1° field of view; the first one considers a matrix detector and the second one considers several linear TDI detectors currently used in space missions. We demonstrate that such systems provide efficient optical quality over the full field and offer a substantial gain in terms of volume of the focal plane arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.