Abstract

Medium voltage DC (MVDC) networks are attracting more attention amid increased renewables penetration. The reliability of these DC systems is critical, especially following grid contingencies to maintain critical loads supply and provide ancillary services, such as black-start. This paper proposes an innovative energy management system (EMS) to maintain reliable MVDC network operation under prolonged AC grid contingencies. Similar EMS designs in literature tend to focus on limited operating modes and fall short of covering comprehensive elongated blackout considerations. The proposed EMS in this paper aims to preserve the distribution network functionality of the impacted MVDC system through maintaining a constant DC bus voltage, maximizing critical load supply duration, and maintaining the MVDC system black-start readiness. These objectives are achieved through controlling generation units between Maximum Power Point Tracking (MPPT) and Voltage Regulation (VR) modes, and implementing a smart load shedding and restoration algorithm based on network parameters feedback, such as storage State of Change (SoC) and available resources. Practical design considerations for MVDC network participation in AC network black start, and the following grid synchronization steps are presented and tested as part of the EMS. The proposed system is validated through simulations and scaled lab setup experimental scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.