Abstract

Electrocatalytic hydrogen production by water splitting is highly energy-intensive due to poor electrocatalysts and sluggish four-electron oxygen evolution reaction (OER) kinetics. Herein, MnO2 and sulfur-doped MnO2 (S-MnO2) are prepared by a simple hydrothermal method. The results show that S-MnO2 exhibits a higher OER activity than MnO2 because the sulfur doping gives rise to more Mn3+ active sites, oxygen vacancies (VO) and electrochemically active surface areas. Density functional theory (DFT) calculation further confirms that the abundant VO leads to a higher surface energy of S-MnO2, which is conducive to the adsorptions of H2O and OH- on Mn3+ sites. Moreover, formaldehyde oxidation reaction (FOR) is employed to substitute for sluggish OER to improve hydrogen evolution reaction (HER). Compared to OER-based electrolyzer (3.354 V), the cell voltage of FOR-based electrolyzer (2.778 V) at 100 mA cm−2 has decreased by 17.17 %, and the Faradic efficiency of hydrogen production increases from 89.6 % to 98.6 %. The results indicates that to produce the same amount of hydrogen, 17.17 % of electric energy can be economized. Thus the cost of hydrogen production decreases greatly. The HER efficiency is greatly improved because FOR has faster kinetics than OER. Meanwhile, after running for 2 h at 1.75 V, 52 % of formaldehyde has been degraded. The results demonstrate that the innovative electrolyzer can not only greatly improve the HER efficiency, but also efficiently degrade formaldehyde pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call