Abstract

The growth of electrical machine applications in high-torque environments such as marine propulsion and wind energy is encouraging the development of higher-power-density machines at ever higher efficiencies and under competitive pressure to meet higher demands. In this study, numerical simulations are performed to investigate the characteristics of air cooling applied to a 3 MW high-torque internal permanent magnet electric machine with integrated power electronics. The whole system of the main machine and two converters at either end are modelled with all details. Effects of different parameters on the total pressure drop and air flow rate to the machine and converters are examined. Results show that by changing the converter outlet hole size, the air flow rate to the machine and converter can be adjusted. Air guides and pin vents reveal excellent performance in the distribution of air to laminations and windings with a penalty of some increase in pressure drop, which is more pronounced when using smaller outlet holes. Furthermore, the air return manifold increases the pressure drop and causes a reduction in air flow rate to the converter. Insulation between compression plate and laminations is an unavoidable component used in electric machines and acts as a thermal insulator. However, it can also significantly augment pressure drop, especially in combination with smaller outlet holes. Thermal studies of the integrated power electronics illustrate that components’ temperatures are less than the temperature limit, confirming enough air through the converter. Analysis of power electronics in the case of fan failure provides the operational time window for the operators to respond.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call