Abstract
Bacterial keratitis is a vision-threatening infection of the cornea that is typically treated with antibiotics. However, antibiotics sometimes fail to eradicate the infection and do not prevent or repair the damage caused directly by the bacteria or the host immune response to the infection. Our group previously demonstrated that treatment of Pseudomonas aeruginosa keratitis in rabbits with innovative cold atmospheric plasma (iCAP) resulted in reduced edema, ulcer formation, and bacterial load. In this study, we investigated the efficacy of iCAP treatment in methicillin-resistant Staphylococcus aureus (MRSA). New Zealand white rabbits were infected intrastromally with MRSA then treated with iCAP, moxifloxacin, vancomycin, or combination of iCAP with each antibiotic to assess the safety and efficacy of iCAP treatment compared to untreated controls and antibiotics. iCAP treatment significantly reduced bacterial loads and inflammation, improved anterior chamber clarity, and prevented corneal ulceration compared to untreated controls and antibiotic treatment. Safety assessments of grimace test scores and tear production showed that iCAP was not significantly different from either antibiotic treatment in terms of distress or tear production. Combination iCAP/antibiotic treatment did not appear to provide significant added benefit over iCAP alone. Our findings suggest that the addition of iCAP may be a viable tool in reducing damage to the cornea and anterior chamber of the eye following S. aureus keratitis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.