Abstract

The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. The project provides a stepwise evaluation of the following NO{sub x} reduction technologies: Advanced overfire air (AOFA), Low NO{sub x} burners (LNB), LNB with AOFA, and Advanced Digital Controls and Optimization Strategies. The project has completed the baseline, AOFA, LNB, and LNB+AOFA test segments, fulfilling all testing originally proposed to DOE. Analysis of the LNB long-term data collected show the full load NO{sub x} emission levels to be near 0.65 lb/MBtu. This NO{sub x} level represents a 48 percent reduction when compared to the baseline, full load value of 1. 24 lb/MBtu. These reductions were sustainable over the long-term test period and were consistent over the entire load range. Full load, fly ash LOI values in the LNB configuration were near 8 percent compared to 5 percent for baseline. Results from the LNB+AOFA phase indicate that full load NO{sub x} emissions are approximately 0.40 lb/MBtu with a corresponding fly ash LOI value of near 8 percent. Although this NO{sub x} level represents a 67 percent reduction from baseline levels, a substantial portion of the incremental change in NO{sub x} emissions between the LNB and LNB+AOFA configurations was the result of operational changes and not the result of the AOFA system. Phase 4 of the project is in progress. During first quarter 1995, design of the advanced control and optimization software and strategies continued. Process data collected from the DCS is being archived to a server on the plant information network and subsequently transferred to SCS offices in Birmingham for analysis and use in training the neural network combustion models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call