Abstract
Proton exchange membrane fuel cells have strict requirements for the CO concentration in H2-rich fuel gas. Here, from the perspective of industrial practicability, a highly dispersed Pt catalyst (2-4 nm) supported on activated carbon (AC), which was modified by electronic promoters (K+) and structural promoters (isopropanol), is studied in detail. Compared with traditional metal oxide supports, the K-Pt/AC catalysts, which benefit from the tuned charge distribution, achieve a significant reduction of CO (from 1% to <0.1 ppb) under H2-rich conditions and show potential for used in large-scale industrial hydrogen purification. Experimental results and theoretical calculations reveal that the K atom, with its lower electronegativity, contributes to the shift of surface Pt2+ to a lower binding energy due to the presence of oxygen species on the AC surface. This facilitates oxygen activation and accelerates desorption of the CO2 product, thereby accelerating the reaction process and enabling the deep removal of CO in a hydrogen-rich atmosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.