Abstract

The lung in systemic sclerosis (scleroderma) is susceptible to fibrosis and the ensuing respiratory insufficiency contributes to significant morbidity and mortality in this disease. The lack of effective therapies for pulmonary fibrosis has spurred a re-evaluation of pathobiological paradigms and therapeutic strategies in scleroderma-associated interstitial lung disease and in idiopathic pulmonary fibrosis. The purpose of this review is to examine emerging new therapeutic targets that modulate pro-fibrotic phenotypes of tissue-resident cells and the associated aberrant tissue remodeling responses in fibrotic disorders. Progressive forms of tissue fibrosis, including scleroderma, are characterized by an accumulation of activated mesenchymal cells and their secreted extracellular matrix proteins in association with dysrepair of epithelial and endothelial cells. Recent studies suggest that emergence of cellular phenotypes that perpetuate loss of cellular homeostasis is characteristic of many fibrosis-related clinical syndromes. Therapeutic strategies that modulate the fate/phenotype of reparative structural cells, including epithelial, endothelial, and mesenchymal cells, offer new opportunities for the development of more effective drugs for the treatment of fibrosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.