Abstract
Short-term exposure to ground-level ozone (O3) poses significant health risks, particularly respiratory and cardiovascular diseases, and mortality. This study addresses the pressing need for accurate O3 forecasting to mitigate these risks, focusing on South Korea. We introduce Deep Bias Correction (Deep-BC), a novel framework leveraging Convolutional Neural Networks (CNNs), to refine hourly O3 forecasts from the Community Multiscale Air Quality (CMAQ) model. Our approach involves training Deep-BC using data from 2016 to 2019, including CMAQ's 72-hour O3 forecasts, 31 meteorological variables from the Weather Research and Forecasting (WRF) model, and previous days' station measurements of 6 air pollutants. Deep-BC significantly outperforms CMAQ in 2021, reducing biases in O3 forecasts. Furthermore, we utilize Deep-BC's daily maximum 8-hour average O3 (MDA8 O3) forecasts as input for the AirQ+ model to assess O3's potential impact on mortality across seven major provinces of South Korea: Seoul, Busan, Daegu, Incheon, Daejeon, Ulsan, and Sejong. Short-term O3 exposure is associated with 0.40 % to 0.48 % of natural cause and respiratory deaths and 0.67 % to 0.81 % of cardiovascular deaths. Gender-specific analysis reveals higher mortality rates among men, particularly from respiratory causes. Our findings underscore the critical need for region-specific interventions to address air pollution's detrimental effects on public health in South Korea. By providing improved O3 predictions and quantifying its impact on mortality, this research offers valuable insights for formulating targeted strategies to mitigate air pollution's adverse effects. Moreover, we highlight the urgency of proactive measures in health policies, emphasizing the significance of accurate forecasting and effective interventions to safeguard public health from the deleterious effects of air pollution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.