Abstract

The high manufacturing cost for metallic glasses hampers actual commercial applications of this class of fascinating materials. In this letter, the effect of oxygen impurity on the glass forming ability and tensile properties of Zr-BMG composites were studied. Our results have demonstrated that oxygen was absorbed and concentrated only in the precipitated β-Zr phase, leading that the remainder molten metal retains good glass forming ability. The high oxygen concentration in the β-Zr phase induces a significant solid-solution strengthening effect, this resulting in an enhanced strength of the BMG composites without sacrificing their overall ductility. Based on this alloying strategy, we have successfully developed the low-cost Zr-based BMG composites with excellent tensile properties and good glass forming ability, using the low grade industrial raw materials processed under industrial vacuum systems. This finding is expected to greatly cut down the manufacturing cost and greatly promote the commercial applications of the BMG composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.