Abstract

In sterile drug product manufacturing, scratched and broken glass containers (i.e., vials) cause product losses, glass particles, equipment contamination and additional cleaning efforts. However, mechanical resistance and exposure of vials to mechanical stress are not sufficiently understood, and no systematic approach for reducing glass-related losses is established. Manufacturers may tackle glass-related losses more rationally if (i) frequencies for inflicting disqualifying damages to drug product containers are known for given forces, (ii) actual exposure in industrial filling lines is quantified and (iii) process enhancements are derived based on collected information.In this work, an innovative approach for exploiting these opportunities, identifying glass defect root causes and reducing glass defects is provided. Devices for quantifying (i) damaging frequencies and (ii) actual exposure are presented and then applied in an industrial case study on sterile drug product manufacturing; finally, (iii) process enhancements are derived and implemented. In the case study, frequencies for scratching vials at given forces as well as breaking forces have been determined. Peak exposure in the investigated filling line was detected at 6 N. As a result of the case study, key machine parts were identified and adjusted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.