Abstract

Upgrading the internal combustion engine (ICE) driven cars to the electric vehicles (EVs) offers the opportunity to reduce the fossil fuel consumption, emission rates and total driving costs. However, the large scale utilization of the EVs introduces a stochastic load demand to the power grid. The effect of EVs charging demand on the distribution network operation should be investigated properly. This paper proposed a novel model to study the effects of power exchange between the grid and EVs on the power system demand profile, the operation stability index, and the reliability indices. To this end, the operation instability indices are introduced by the range and standard deviation of the load factor of the network components to evaluate the system stability. Further, the CAIFI,11Customer Average Interruption Frequency Index. SAIDI,22System Average Interruption Duration Index. SAIFI,33System Average Interruption Frequency Index. and ASAI44Average Service Availability Index. reliability indices are calculated for various vehicle-to-grid (V2G) and grid-to-vehicle (G2V) power level to estimate the impact of different level of power exchange on system reliability. We introduced an EV charging scheduling approach which considers the specification of Li-Ion battery and the limitations for increasing battery life. The power exchange profile for V2G is also calculated using the constant power method to discharge the energy at different levels for times which cars are parked at the workplace. Due to the stochastic nature of EVs, the minimal path method is used to compute the stability and reliability parameters and the backward–forward algorithm is used to load flow analysis. The proposed model is evaluated via modified IEEE 33-bus test system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.