Abstract
Abstract This article presents a comprehensive improvement in the experimental analysis of cracking processes in smooth and sharp V-notched samples taken from gas transport pipelines, utilizing the acoustic emission (AE) method. The research aimed to establish a robust correlation between the failure mechanisms of uni-axially tensile samples and the distinct characteristics of AE signals for enhanced quality management in pipeline integrity. The study encompassed materials from two different straight pipe sections, encompassing both long-term used materials and new, unused materials. Through the application of the k-means grouping method to AE signal analysis, we achieved the identification of AE signal parameters characteristic of various stages of the material destruction process. This advancement introduces a significant improvement in monitoring and managing the operational safety of pipeline networks, offering a methodology that leverages advanced acoustic emission signal analysis. The outcomes present significant implications for the pipeline industry by proposing methods to enhance safety systems and more effectively manage the integrity and quality of gas infrastructure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.