Abstract

The poor outcome of primary malignant brain tumors is predominantly due to local invasion and recurrence. Multifunctional nanoparticles harbouring various functions including targeting, imaging and treatment have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Multifunctionality can be engineered into a single nanoplatform to provide tumour-specific detection, treatment, and follow-up. This review summarizes different targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications. Using nanoparticles as carriers of photoactivable compounds is a very promising approach as they can satisfy all the requirements for an ideal photodynamic therapy agent. Nanoparticles represent emerging photosensitizer carriers that show great promise for PDT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call