Abstract

Triple negative breast cancer (TNBC) is defined by a lack of targets, namely hormone receptor (HR) expression and human epidermal growth factor receptor 2 amplification. Cytotoxic chemotherapy remains the mainstay of treatment. Though TNBC constitutes approximately 10-15% of breast cancer, it is disproportionally lethal, but it is hoped that outcomes will improve as targetable oncogenic drivers are identified. Translational work in TNBC has focused on subsets defined by defects in homologous recombination repair, immune cell infiltration, or programmed death ligand receptor 1 expression, an over-active phosphoinositide-3 kinase pathway, or expression of androgen receptors. Though not specific to TNBC, the novel cell surface antigen trophoblast antigen 2 has also been identified and successfully targeted. This work has led to Food and Drug Administration approvals for small molecule poly-ADP-ribosyl polymerase inhibitors in patients with deleterious germline mutations in BRCA1 or BRCA2, the combination of nab-paclitaxel with immune checkpoint inhibitor antibodies in the first-line metastatic setting for programmed death ligand receptor 1+ TNBC, and use of the antibody-drug conjugate sacituzumab govitecan in the later-line metastatic setting. Identification of targetable oncogenic drivers in TNBC is an area of intense cancer biology research, hopefully translating to new therapies and improved outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call