Abstract

Neurosurgical technologies have become increasingly more adaptive, featuring real-time and patient-specific guidance in preoperative, intraoperative, and postoperative settings. This review offers insight into how these integrative innovations compare with conventional approaches in spine surgery, focusing on machine learning (ML), artificial intelligence, augmented reality and virtual reality, and spinal navigation systems. Data on technology applications, diagnostic and procedural accuracy, intraoperative times, radiation exposures, postoperative outcomes, and costs were extracted and compared with conventional methods to assess their advantages and limitations. Preoperatively, augmented reality and virtual reality have applications in surgical training and planning that are more immersive, case specific, and risk-free and have been shown to enhance accuracy and reduce complications. ML algorithms have demonstrated high accuracy in predicting surgical candidacy (up to 92.1%) and tailoring personalized treatments based on patient-specific variables. Intraoperatively, advantages include more accurate pedicle screw insertion (96%-99% with ML), enhanced visualization, reduced radiation exposure (49 μSv with O-arm navigation vs. 556 μSv with fluoroscopy), increased efficiency, and potential for fewer intraoperative complications compared with conventional approaches. Postoperatively, certain ML and artificial intelligence models have outperformed conventional methods in predicting all postoperative complications of >6000 patients as well as predicting variables contributing to in-hospital and 90-day mortality. However, applying these technologies comes with limitations, such as longer operative times (up to 35.6% longer) with navigation, dependency on datasets, costs, accessibility, steep learning curve, and inherent software malfunctions. As these technologies advance, continuing to assess their efficacy and limitations will be crucial to their successful integration within spine surgery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.