Abstract

The vast majority of porcelain distribution arrester failures are the result of moisture ingress. Standards lag technology and do not currently address the unique design aspects of polymer arresters. Traditional sealing test methods cannot be run on polymer arresters because of lack of internal air space. A novel design test is proposed which involves sensitive interfacial leakage current measurements as the diagnostic. Samples are thermally cycled in water to produce thermal excursions and aging, while encouraging water ingress, should the sealing system be compromised. The proposed test is a modification of a protocol established for polymer insulators, which has been correlated to field service.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.