Abstract
Periodic ARMA, or PARMA, time series are used to model periodically stationary time series. In this paper we develop the innovations algorithm for periodically stationary processes. We then show how the algorithm can be used to obtain parameter estimates for the PARMA model. These estimates are proven to be weakly consistent for PARMA processes whose underlying noise sequence has either finite or infinite fourth moment. Since many time series from the fields of economics and hydrology exhibit heavy tails, the results regarding the infinite fourth moment case are of particular interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.