Abstract
We consider integer-valued autoregressive models of order one contaminated with innovational outliers. Assuming that the time points of the outliers are known but their sizes are unknown, we prove that Conditional Least Squares (CLS) estimators of the offspring and innovation means are strongly consistent. In contrast, CLS estimators of the outliers' sizes are not strongly consistent. We also prove that the joint CLS estimator of the offspring and innovation means is asymptotically normal. Conditionally on the values of the process at time points preceding the outliers' occurrences, the joint CLS estimator of the sizes of the outliers is asymptotically normal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.