Abstract
The main challenge faced by agriculture is to produce enough food for a continued increase in population, however in the context of ever-growing competition for water and land, climate change, droughts and anthropic water scarcity, and less-participatory water governance. Such a context implies innovative issues in agricultural water management and practices, at both the field and the system or the basin scales, mainly in irrigation to cope with water scarcity, environmental friendliness, and rural society welfare. Therefore, this special issue was set to present and discuss recent achievements in water, agriculture, and food nexus at different scales, thus to promote sustainable development of irrigated agriculture and to develop integrated approaches to water and food. Papers cover various domains including: (a) evapotranspiration and crop water use; (b) improving water management in irrigated agriculture, particularly irrigation scheduling; (c) adaptation of agricultural systems to enhance water use and water productivity to face water scarcity and climate change; (d) improving irrigation systems design and management adopting multi-criteria and risk approaches; (e) ensuring sustainable management for anthropic ecosystems favoring safe and high-quality food production, as well as the conservation of natural ecosystems; (f) assessing the impact of water scarcity and, mainly, droughts; (g) conservation of water quality resources, namely by preventing contamination with nitrates; (h) use of modern mapping technologies and remote sensing information; and (i) fostering a participative and inclusive governance of water for food security and population welfare.
Highlights
Agriculture’s first challenge is to produce enough food for a continued increase in population in a context where the increased demand for food is associated with an ever-growing competition for water and land, climate change and uncertainty, anthropic and droughts water scarcity, poor supply reliability, decline in critical ecosystem services, less-participatory water resources governance, and changing regulatory environments
Irrigation scheduling has greatly advanced since knowledge on evapotranspiration and crops water use is improved, computer modeling eases supporting the development of well-focused programs, and modern technologies provide for timely advice to farmers
It is clear that sets of coherent strategies and solutions need to be applied to mitigate the complexities of overall challenges placed to the sustainable use of water in agriculture and food production
Summary
Agriculture’s first challenge is to produce enough food for a continued increase in population in a context where the increased demand for food is associated with an ever-growing competition for water and land, climate change and uncertainty, anthropic and droughts water scarcity, poor supply reliability, decline in critical ecosystem services, less-participatory water resources governance, and changing regulatory environments. Developments in better and joint approaches to water and fertilizer management are providing for controlling environmental contamination and reducing greenhouse gas emissions This Special Issue is an opportunity to gather different achievements in the domains referred above, aimed at the sustainable use of water and other natural resources at different scales, so contributing to promote better development of irrigated agriculture when adopting a variety of well-performing technologies with good consideration of related social and economic environments. The studies presented focus on evapotranspiration, crop water requirements and modeling, remote sensing for assessing evapotranspiration, irrigation management for improved productivity and water saving, irrigation methods and systems design, control of soil salinity in irrigation, soil amendments for improved water use, surface water conveyance and distribution systems, participatory water governance, droughts and climate change issues, and environmental impacts of irrigated agriculture with focus on nitrates. Three levels were considered: the farm scale, the irrigation system scale, and the basin and regional scale
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.