Abstract
The cyclic thermal process can assist and accelerate the kinetics of phase transformation. Conventional UNS S17400 grade stainless is characterized by a martensitic microstructure. After solution treatment, the steel was aged by thermal cycling between 600 °C and 25 °C and quenched in water in each cycle, completing under the self-designed system. The nano precipitates of very fine copper particles and larger NbC particles were found by using transmission electron microscopy (TEM). The fraction and quantity of high angle grain boundaries (HAGBs) after 36 cycles were the highest among the three numbers of thermal cycles. The peak hardness also occurred after 36 cycles and was attributed to the finest grains, high fraction of HAGBs, and the largest local microstrain. The microtwins and the reverted γ were formed by the thermal cycling process. The estimated fraction value of reverted γ was very low, below 0.1, with a calculated precipitation rate about 12.6 s−1 at t0.5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.